
Activity Six

Licensing 2.0

Beth Flanagan, Paul Barker

Who Are We?

Togán Labs Ltd

● Ireland based Embedded Linux Consultancy

● Developers of Oryx Linux

● OpenChain Partner, strong focus on license compliance

Beta Five Ltd

● Nottingham, UK based

● Open Source Consultancy

● Linux-based projects from Embedded to Cloud

Contact details

• For any follow up questions or enquiries

• Beth Flanagan, Togán Labs Ltd

● pidge@toganlabs.com

• Paul Barker, Beta Five Ltd

● paul@betafive.co.uk

mailto:pidge@toganlabs.com
mailto:paul@betafive.co.uk

Overview

• Mirror creation

• Providing license manifests & text

• Providing recipes

How downloads work in bitbake

• Sources are fetched into the downloads directory

• Git sources are cloned into bare local repositories

● Other version control systems are handled similarly

• For each successful fetch a ‘.done’ file is created

Why create a mirror?

• Best approach for open source distros & BSPs

• Makes life easy for downstream Yocto users

• Saves you from disappearing sources

Generating mirror tarballs

• Bitbake supports mirrorring git sources as a tarball of the

bare repository

● Again, works similarly for other version control systems

• We can create these tarballs automatically during fetch

● Set the following variable in local.conf or your distro conf

file:

● BB_GENERATE_MIRROR_TARBALLS = "1"

Ensuring downloads is populated

• Need to be careful here, sources may not be re-

downloaded if a recipe is built from sstate

● This applies even if downloads is empty

• Must explicitly run the fetch task for all recipes in our

image, SDK or other targets

• Thankfully this can be done via the following methods:

● 2.5 “sumo” or later: bitbake <target> --

runall=fetch

● 2.4 “rocko” or earlier: bitbake <target> -c fetchall

Collecting mirror files

• We don’t need the ‘.done’ files in our mirror

• We also don’t need the uncompressed bare git repositories

and similar directories for other version control systems

• We use the following magic:

mkdir -p mirror

for f in `find downloads -maxdepth 1 -type f -not -

name *.done`; do ln -f $f mirror/`basename $f`; done

• These hard links save space but are easy to copy

Serving your mirror

• Internally

● Local directory

● NFS share

• Publically

● HTTP server

Using the mirror

• Local path:

PREMIRRORS_prepend = " \

ftp://.*/.* file://${TOPDIR}/mirror/ \n \

http://.*/.* file://${TOPDIR}/mirror/ \n \

https://.*/.* file://${TOPDIR}/mirror/ \n \

git://.*/.* file://${TOPDIR}/mirror/ \n"

• Public mirror:

PREMIRRORS_prepend = " \

ftp://.*/.* https://example.com/mirror/ \n \

http://.*/.* https://example.com/mirror/ \n \

https://.*/.* https://example.com/mirror/ \n \

git://.*/.* https://example.com/mirror/ \n"

Testing your mirror

• Set the following in local.conf:

● BB_FETCH_PREMIRRORONLY = “1”

• The build will then use only the configured mirror

The own-mirrors class

• Intended for local testing only

• You can set the following in local.conf:

● INHERIT += "own-mirrors"

SOURCE_MIRROR_URL =

"https://example.com/mirror/"

• Do not use this in a distro conf as it supports only one

SOURCE_MIRROR_URL value

License manifests

• Useful to have a simple list of packages installed and their

licenses

• This is created automatically during an image build

• See tmp/deploy/licenses/<image>-<machine>-<timestamp>

• For example:

• tmp/deploy/licenses/core-image-base-qemux86-20180926120707/

License manifests (2)

• Files created:

• package.manifest

● Simple list of installed packages

• license.manifest

● Packages, versions, recipe names and licenses

• image_license.manifest

● As above for dependencies not directly installed in the

image (e.g. bootloader)

License Text

• For each recipe you will also find a directory in

tmp/deploy/licenses.

• This contains license texts

• Also contains a recipeinfo file summarising the license

and recipe version

Including license text in images

• Simple way to ensure end users receive license text

• In local.conf or a distro conf you can set:

● COPY_LIC_DIRS = “1”

● Places license text for each package into

/usr/share/common-licenses

● COPY_LIC_MANIFEST = “1”

● Places previously discussed license.manifest into

/usr/share/common-licenses

Including license text in images (2)

• One caveat…

• COPY_LIC_DIRS and COPY_LIC_MANIFEST only cover

packages installed during image creation

• Licenses for packages installed via on-target package

management are not handled by these methods

Creating license packages

• Another variable you can set:

● LICENSE_CREATE_PACKAGE = “1”

• For each recipe this creates a ${PN}-lic package

● E.g. busybox-lic

• Adds this as an RRECOMMENDS for the base package

• Installs licenses into /usr/share/licenses/${PN}

● E.g. /usr/share/licenses/busybox

Providing recipes

• The archiver can be used to provide recipes

● Creates tarball of the bb file, bbappends & includes

• However, this makes it difficult for users to rebuild images

• It can be argued from the GPL that providing full layers is

required

● “scripts used to control compilation and installation”

● I’m not a lawyer!

Providing recipes (2)

• The best way to handle this is to release your layers

• Also ensure you snapshot bitbake and third party layers

used to build release images

• Recommend you also provide bblayers.conf, local.conf

and any other customisation

Releasing your layer

• Releasing publically as an open source layer is easiest

● You can add your layer to http://layers.openembedded.org/

• However, you can also release privately to customers

● Give people a source archive or a download link with your

product or images

http://layers.openembedded.org/

Providing the correct versions

• Please don’t just point people at a layer repository or

branch

• Make sure they get the same exact versions of bitbake and

metadata which was used to build your image

• Many ways to do this

● Tarball

● Git submodules

● Repo tool

Avoid AUTOREV for releases

• Setting SRCREV = “${AUTOREV}” can be great in

development

• Terrible for releases

• People receiving your layer may need to rebuild months or

years later and could get a different git commit

• Always explicitly set SRCREV when building releases

Don’t be clever

DESCRIPTION = "Node.js modules"
LICENSE = "MIT & ISC & Apache-2 & FIPL-1.0 & BSD-2-Clause"
DEPENDS = "nodejs-native glfw glew cairo pango jpeg libpng"
DEPENDS_class-native = "nodejs-native"
PROVIDES = "nodejs-modules"
PR = "r2
S = "${WORKDIR}/${PN}-${PV}"
PD= "${PN}-${PV}/packages"
require packages.inc

Don’t be clever

DESCRIPTION = "Node.js modules"
LICENSE = "MIT & ISC & Apache-2 & FIPL-1.0 & BSD-2-Clause"
DEPENDS = "nodejs-native glfw glew cairo pango jpeg libpng"
DEPENDS_class-native = "nodejs-native"
PROVIDES = "nodejs-modules"
PR = "r2
S = "${WORKDIR}/${PN}-${PV}"
PD= "${PN}-${PV}/packages"
require packages.inc

Wait? Wot?

Don’t be clever

SRC_URI+= "http://registry.npmjs.org/put/-/put-0.0.6.tgz;name=0017put;unpack=yes;downloadfilename=put-
0.0.6.tgz;subdir=${PD}/0017-put-0.0.6"
LIC_FILES_CHKSUM += "file://real/put-0.0.6/package/LICENSE;md5=b2d989bc186e7f6b418a5fdd5cc0b56b"

SRC_URI+= "http://registry.npmjs.org/sax/-/sax-1.2.1.tgz;name=0018sax;unpack=yes;downloadfilename=sax-
1.2.1.tgz;subdir=${PD}/0018-sax-1.2.1"
LIC_FILES_CHKSUM += "file://real/sax-1.2.1/package/LICENSE;md5=326d5674181c4bb210e424772c60fa80"

SRC_URI+= "http://registry.npmjs.org/through/-/through-
2.3.8.tgz;name=0019through;unpack=yes;downloadfilename=through-2.3.8.tgz;subdir=${PD}/0019-through-2.3.8"
LIC_FILES_CHKSUM += "file://real/through-
2.3.8/package/readme.markdown;md5=6ff48d70322f9b54b7f36536954bca06"
LIC_FILES_CHKSUM += "file://real/through-
2.3.8/package/LICENSE.APACHE2;md5=ffcf739dca268cb0f20336d6c1a038f1"
LIC_FILES_CHKSUM += "file://real/through-2.3.8/package/LICENSE.MIT;md5=e0f70a42adf526e6f5e605a94d98a420"

SRC_URI+=

http://registry.npmjs.org/put/-/put-0.0.6.tgz;name=0017put;unpack=yes;downloadfilename=put-0.0.6.tgz;subdir=$%7bPD%7d/0017-put-0.0.6
http://registry.npmjs.org/put/-/put-0.0.6.tgz;name=0017put;unpack=yes;downloadfilename=put-0.0.6.tgz;subdir=$%7bPD%7d/0017-put-0.0.6
http://registry.npmjs.org/sax/-/sax-1.2.1.tgz;name=0018sax;unpack=yes;downloadfilename=sax-1.2.1.tgz;subdir=$%7bPD%7d/0018-sax-1.2.1
http://registry.npmjs.org/sax/-/sax-1.2.1.tgz;name=0018sax;unpack=yes;downloadfilename=sax-1.2.1.tgz;subdir=$%7bPD%7d/0018-sax-1.2.1
http://registry.npmjs.org/through/-/through-2.3.8.tgz;name=0019through;unpack=yes;downloadfilename=through-2.3.8.tgz;subdir=$%7bPD%7d/0019-through-2.3.8
http://registry.npmjs.org/through/-/through-2.3.8.tgz;name=0019through;unpack=yes;downloadfilename=through-2.3.8.tgz;subdir=$%7bPD%7d/0019-through-2.3.8

Trust but verify

● meta-license-tools + fossup + fossology
● Patched archiver scans
● SLOW!!! But finds issues
● A lot of knowledge needed about what you’re actually distributing.

USER_CLASSES += "license archiver"
COPYLEFT_LICENSE_INCLUDE = "GPL* AGPL* LGPL* MPL*"
COPYLEFT_LICENSE_EXCLUDE = "CLOSED Proprietary"
ARCHIVER_MODE[src] = "patched"
ARCHIVER_MODE[diff] = "0"
ARCHIVER_MODE[dumpdata] = "0"
ARCHIVER_MODE[recipe] = "1"
COPYLEFT_RECIPE_TYPES = "target"
INHERIT += "fossology”
VM_SPRINT_NUMBER = "054"

Trust but verify

Lets do a FOSSOLOGY CLEARANCE!

	Slide 1: Activity Six
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29

